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Cannabinoid CB1 receptor and cholecystokinin-1 (CCK1) receptors are located in peripheral nerve terminals of
the gut, where they mediate satiety signals. Here we describe a detailed analysis of the interaction of both
receptors in the control of feeding of food-deprived rats. Male Wistar rats were deprived for food 24 h before
testing. Rats were pre-treated with SR141716A (Rimonabant) or WIN 55,212-2 before CCK-8 sulphated
administration and tested for food intake 60, 120 and 240 min after last drug injection. In parallel, the effect of
Lorglumide – a CCK1 receptor antagonist – pre-treatment was evaluated on feeding behaviour after
SR141716A administration. Results show that SR141716A activates c-Fos expression in brainstem areas
receiving vagal inputs. Blockade of CB1 receptors with SR141716A (1 mg/kg) reduces feeding and display
additive satiety induction with the CCK1 receptor agonist CCK-8 sulphated (5, 10, 25 μg/kg). The effect of
SR141716A is not blocked by Lorglumide (10 mg/kg), indicating independent sites of action. Conversely, the
administration of the CB1 agonist WIN 55,212-2 (2 mg/kg) reduced satiety induced by CCK-8. In conclusion,
these results report additive anorectic actions for CCK1 activation and peripheral CB1 receptor blockade
providing a framework for combined therapies in the treatment of eating disorders.
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1. Introduction

It is presentlywell documented that the endocannabinoid system is a
potent modulator of feeding behaviour. Both Δ9-tetrahydrocannabinol
(THC, the psychoactive constituent of Cannabis sativa) and the
endogenous cannabinoid anandamide (AEA) promote overeating in
partially satiated rats by interaction with central cannabinoid CB1
receptors (Williams et al., 1998; Williams and Kirkham, 1999), and it is
known that THC stimulates appetite also in humans (Berry and
Mechoulam, 2002). Antagonism of CB1 receptors by SR141716A
decreases food intake and counteracts the hyperphagia promoted by
CB1 receptor activation (Arnone et al., 1997; Kirkham and Williams,
2001; Rowland et al., 2001). Despite the existence of central mechanism
for the regulation of food intake by endocannabinoids (Williams and
Kirkham, 1999; Jamshidi and Taylor, 2001) our laboratory has identified
peripheral mechanisms responsible of their effects on appetite (Gomez
et al., 2002). Anandamide and agonismof CB1 receptors byWIN55,212-2
promote hyperphagia through a peripheral mechanism, whereas CB1
receptor blockade suppresses feeding by acting on CB1 receptors located
on capsaicin-sensitive sensory terminals innervating the gastrointestinal
tract rather than after central administration (Gomez et al., 2002).

In the periphery, regulation of food intake is modulated by both
stimulatory (orexigenic) and inhibitory (satiety) factors that stimulate
nerve terminals innervating the gastrointestinal tract. The satiety
hormone cholecistokinin (CCK) is a potent inhibitor of feeding that
exerts its actions by binding to CCK1 receptors located in vagal afferent
neurons (Smith et al., 1981; Ritter and Ladenheim, 1985; Moran et al.,
1990;McLaughlin et al., 1999; Broberger et al., 2001; Reidelberger et al.,
2003, 2004). It is generally assumed that CCK1 receptors are mainly
distributed in the periphery and are responsible for the anorectic effects
whereas a second-type receptor, the CCK2 receptor, is widely localized
in thebrainmediatinganxiety-relatedbehaviours. There are also several
molecular CCK forms in the brain and peripheral organs. The CCK1

receptor exerts a relatively specific affinity for thebiologically activeCCK
c-terminal octapeptide (CCK-8). Indeed, administration of the CCK-8
peripherally decreases meal size by a mechanism that requires the
integrity of the vagus nerve (Smith et al., 1981).

A previous study has revealed that both, CCK1 receptor and
cannbinoid CB1 receptors are located in peripheral terminals of nodose
ganglion (Burdyga et al., 2004). However, a detailed behavioural analysis
of CB1-CCK1 receptor interactions is still not available. Since both
endocannabinoids and CCK appear to exert a role mediating food
consumption by interaction with peripheral CB1 and CCK1 receptors
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Fig. 1. c-Fos immunostaining in the brain after SR141716A intraperitoneal treatment.
There is a marked increase in c-Fos expression after SR141716A (0.3-3.0 mg/kg, i.p.)
treatment in areas related with the peripheral nervous system as the area postrema,
nucleus paraventricular and nucleus of the solitary tract. There is also a significant
induction of c-Fos in central nucleus of the amygdala. The c-Fos expression is
dependent of the SR141716A dose. Different from vehicle-injected animals: *pb0.05;
**pb0.01; ***pb0.001. Different from SR141716 treatment: ΔΔpb0.01. One-way ANOVA
followed by Newman–Keuls test. SCN: suprachiasmatic nucleus; VTA: ventral
tegmental area; LC: locus coeruleus; A. postrema: area postrema; NAc core: nucleus
accumbens core; NAc shell: nucleus accumbens shell; CeA: central nucleus of the
amygdala; PVN: paraventricular nucleus; NST: nucleus of the solitary tract.
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respectively, the goal of our study was to determine in vivo the
interaction between CB1 receptors and CCK in the mediation of satiety.
Weused food-deprived rats for analyzing the satiety-inducing properties
of CB1 antagonism (Gomez et al., 2002) and partially-satiated rats as a
knownmodel of cannabinoid CB1 receptor agonist-induced overfeeding
(Williams et al., 1998; Williams and Kirkham, 1999). The induction of
c-Fos expression by systemic administration of SR141716Awas used as a
correlate of the pharmacological interaction. We show here that
SR141716A activates c-Fos expression in brainstem areas receiving
vagal inputs. SR141716A has additive effects on CCK-induced feeding
suppression and pretreatment with lorglumide did not modify the
anorectic effects of CB1 antagonism. Conversely, cannabinoid CB1
agonism counteracts the feeding suppression induced by CCK in vivo.
Our results suggest that CB1 antagonism inhibits feeding behaviour by
peripheral mechanisms that do not involve CCK1 receptors.

2. Methods

2.1. Animals and general protocol used

Male wistar rats (350±50 g, Harlan Iberica, Barcelona, Spain) were
housed individually in conditions of constant temperature (21±2 °C)
and a 12 h light/dark cycle (lights on: 07:00 am) with food and water
available ad libitum except when restriction was required. Animals
were deprived for food (but not water) during 24 h before testing the
drugs and habituated to handling. Partially satiated animals were food-
deprived for 24 h and allowed to eat for 60 min before drug testing.
Animals were returned to their home cage containing now a can with a
measured amount of food (30–40 g) 15 min after drug administration.
Food pellets and food spillage were weighted at 60, 120 and 240 min
after starting the test, and the amount of food was recorded.

Both the maintenance of the animals as well as the experimental
procedures were in accordance with the European Communities
Council Directive (86/609/EEC).

2.2. Drug administration

WIN 55,212-2 (Tocris) was dissolved in a mixed vehicle (ethanol/
tween 80/saline, 1:1:18 vol/vol) and administered i.p. in a volume of
1 ml/kg. SR141716A (Rimonabant) was generously donated by Sanofi
Research (Montpellier, France); it was dissolved in a mixed vehicle
(ethanol/tween 80/saline, 1:1:18) and injected i.p. in a volume of
1 ml/kg. Pre-treatment timewas 30 min. CCK-8 sulphated (Tocris) was
dissolved in saline and administered i.p. in a volume of 1 ml/kg.
Lorglumide (Tocris) was dissolved in the mixed (ethanol/tween 80/
saline) vehicle and injected i.p. in a volume of 10 mg/kg 30 min before
SR141716A treatment. Treatments and doses used were published
elsewhere (Gomez et al., 2002; Ritter and Ladenheim, 1985).

2.3. c-Fos immunostaining

In order to explore if brain nuclei related to peripheral sensory
system or hypothalamic appetite control displayed c-Fos expression
after cannabinoid CB1 receptor antagonist treatment, we reanalyzed
the quantitative data on the study previously published by our group
(Rodriguez de Fonseca et al., 1997). Briefly, animals were handled for
a week, injected once a day i.p. with sterile 0.9% saline along three
consecutive days and then treated with vehicle or SR141716A (0.3–
3.0 mg/kg, i.p.) Three hours after cannabinoid antagonist treatment,
rats were quickly perfused with 0.9% saline followed by 2%
paraformaldehyde in isotonic sodium phosphate buffer (PBS, pH
7.4). Brains were removed, fixed in the perfusion buffer for 24 h,
stored for 3 to 7 days in a 30% solution of sucrose in PBS, sliced in
40-μm sections (Cryocut 1800; Leica, Foster City, CA), and collected in
PBS. The Fos protein was quantified by immunohistochemistry analysis
with affinity-purified rabbit antibodies to a peptide corresponding to
humanFos aminoacid residues 3 to 16 (Santa Cruz Biotechnology, Santa
Cruz, CA) that was not reactive to Fos-B and Fra-1 proteins. Sections
were incubated with goat antiserum to rabbit antibody in 0.3% Triton
X-100 in PBS solution for 2 h at room temperature, followed by Fos
antiserum (diluted 1:1000) in 0.3% Triton X-100 containing 0.1% bovine
serum albumin in PBS for 20 h at 4 °C. Cell counting was performed
manually at 100× magnification and assigned to brain structures
accordingly to the Atlas of Paxinos and Watson (1986). Questionable
cellswere checked fornuclear localizationof stainingusingmagnification
of 400×. The animals and the slides were coded so that the person
counting the cells was unaware of the animal´s treatment. For each brain
region from one individual animal themaximumnumber of Fos-positive
cells per slice was used as a single data point and analyzed using ANOVA.
Details on the method have been previously published (Rodriguez de
Fonseca et al., 1997).
2.4. Data analysis and statistical procedures

Data from food intake studies were analyzed by two-way ANOVA
using abetweensubjectdesign, followedbyBonferronipost-testwhena
significant F-value was found. Data from c-Fos expression were
analyzed by one-way ANOVA followed by Newman–Keuls multiple
comparison test when a significant F-value was obtained. All statistic
analyses were performed using GraphPad Prism (version 5.0) software.
3. Results

3.1. c-Fos expression in the brain after systemic SR141716A treatment

The quantitative cell counts of the 1997 experiments (Rodriguez
de Fonseca et al., 1997) were used to map c-Fos levels after systemic
administration of SR141716A, in an attempt of identifying brain
pathways engaged during SR141716a-evoked hypophagia. Fig. 1
shows the pattern of c-Fos expression in brain nuclei related to either
peripheral sensory system or hypothalamic circuitry 3 h after i.p.
SR141716A administration. C-Fos expression was upregulated in the
area postrema, paraventricular nucleus of the hypothalamus, nucleus
of the solitary tract and central nucleus of the amygdala 60 min post-
injection. The effect was more evident with low doses of SR141716A
(0.3 mg/kg) and was attenuated after a higher dose of 3.0 mg/kg.



Fig. 3. Effect of CCK1 receptor antagonist Lorglumide pre-treatment on the SR141716A-
induced modulation of feeding behaviour. A) Effect of pre-treatment with lorglumide
(10 mg/kg, i.p., 30 min pre-treatment time) on feeding behaviour after SR141716A along
the time; B) Effect of lorglumide (10 mg/kg, i.p., 30 min pre-treatment time) on feeding
60 min after vehicle or SR141716A treatment. The CB1 receptor antagonist SR141716A
(3 mg/kg, i.p.) decreases food intake in deprived animals 60 min, 120 min and 240 min
after injection compared with vehicle-injected animals: *pb0.05; **pb0.01; ***pb0.01.
Different between vehicle-injected animals and lorglumide+SR141716A treatment:
Δpb0.05. Two-way ANOVA followed by Bonferroni post-test. There is no effect of
pre-treatment with lorglumide at any time [i.e., F(1, 32)=0.54; pN0.05, n.s., 60 min
post-treatment, one-way ANOVA followed by Newman–Keuls test]. Results shown as
means±SEM, n=9.
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3.2. Interaction between CCK-8 and SR141716A in feeding behaviour

Fig. 2 represents the interaction between CCK-8 and SR141716A at
different CCK-8 doses. Note that a, b and c panels are results from the
same experiment. Results have been graphed in three panels to make
easier the visualization of results for the reader. Two-way ANOVA found
an interaction between curves (F14,192=2.53; p=0.0025) and main
effects of treatment (F7,192=43.95; pb0.0001) and time (F7,192=195.1;
pb0.0001). Post-hoc analysis revealed that SR141716A reduced food
intake compared with vehicle-injected animals and there were also
reductions in food intake after CCK-8 treatment at the doses of 10 and
25 μg/kg (Fig. 2B,C, central and right panels respectively). Administration
of SR141716A (30 min pre-treatment time) and CCK-8 has an additive
effect in the suppression of food intake observed after 5, 10 and 25 μg/kg
of CCK-8 (Fig. 2B,C; central and right panels) and SR141716A alone
(Fig. 2A,B,C; left, central and right panels).

3.3. Effect of pretreatment with Lorglumide, a CCK1 receptor antagonist,
on feeding behaviour after SR141716A administration

Statistical analysis for data in Fig. 3A (upper panel) revealed that
there was an effect of treatment (F3,96=12.12; pb0.0001) and time
(F2,96=16.30; pb0.0001). SR141716A treatment reduced feeding
60 min, 120 min and 240 min post-injection (Fig. 3A) but there was
no significant effect with the pre-treatment lorglumide at any time.
Specific analysis of the data at the chosen time of 60 min (Fig. 3B,
bottom panel) revealed that SR141716A reduces food intake in
vehicle-injected animals and there was no lorglumide pre-treatment
effect (F1,32=0.54; p=0.47).

3.4. Interaction between CCK-8 and WIN 55,212-2 in feeding behaviour

Two-way ANOVA found a general effect of treatment (F7,284=25.82;
pb0.0001) and time (F3.284=83.89; pb0.0001) in partially satiated
animals (Fig. 4, upper panels). There were also a general effect of
treatment (F7,288=24.67;pb0.0001)and time(F3,288=75.31;pb0.0001)
in the curves of full deprived animals (Fig. 4, bottom panels). Post-hoc
analysis revealed that CCK-8 treatment reduced food intake in partially
satiated animals at dose of 100 μg/kg during 60, 120, 180 and 240 min
post-treatment (Fig. 4C; upper right panel) and in full food-deprived
Fig. 2. Pre-treatment with SR141716A enhances feeding suppression induced by CCK-8.Ad
CCK-8) induces feeding suppression in deprived animals and enhances satiety induced by CC
Two-way ANOVA found an interaction and main effects of treatment and time at all doses
animals at doses of 25 μg/kg during 60, 180 and 240 min post-treatment
(Fig. 4E, bottom central panel) and at CCK-8 dose of 100 μg/kg during all
times post-treatment tested (Fig. 4F, bottom right panel). Pre-treatment
with the cannabinoid CB1 receptor agonistWIN55,212-2 (30 min before)
ministration of the CB1 receptor antagonist SR141716A (1 mg/kg, i.p., 30 min before
K-8 (5, 10 and 25 μg/kg, i.p.). Results in a, b and c panels are part of the same experiment.
of CCK-8. Results shown as means±SEM, n=9.

image of Fig.�2
image of Fig.�3


Fig. 4. Pre-treatment with WIN 55,212-2 reduces satiety induced by CCK-8.The cannabinoid CB1 receptor agonist WIN 55,212-2 (2 mg/kg, i.p., 30 min before CCK-8) counteracts
feeding suppression induced by CCK-8 (1, 25 and 100 μg/kg, i.p.) in partially satiated (upper pannels) and deprived (lower panels) animals 60 min, 120 min and 240 min post-
injection. Results in A, B, and C upper panels conform one experiment (partially satiated animals) and results in D, E and F lower panels conform other experiement (full-deprived
animals). Two-way ANOVA found an effect of treatment and time at every dose of CCK-8 in both partially satiated and deprived conditions. Results shown as means±SEM, n=10.
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partially counteracted the feeding suppression induced by CCK-8 at
25 μg/kg (180 min).

The general impression in the curves is that pre-treatment with
CB1 agonist partially counteract the feeding suppression induced by
CCK-8. The effect appears at early times and is overcome by elevated
doses of CCK-8.

3.5. Interaction between SR141716A or WIN 55,212-2 and different
doses of CCK-8 on feeding behaviour 60 min post-treatment

Fig. 5A (left panel) shows the interaction betweenWIN 55,212-2 and
differentdosesof CCK-8at one timechosen(60 min) for partially satiated
animals. The analysis of the curves by two-way ANOVA indicated that
there was a significant effect of WIN 55,212-2 pre-treatment
(F1,72=12,90, pb0.0006) and a significant effect of CCK-8 dose
(F3,72=26.43 pb0.0001). Post-hoc analysis revealed that WIN 55,212-2
increases food intake in vehicle-injected animals and in animals treated
at the lowest dose of CCK-8 (1 μg/kg). At higher doses of CCK-8 (25 and
100 μg/kg) the effect of WIN 55,212-2 is no longer significant.

Fig. 5B (right panel) represents the interaction between SR141716A
and different doses of CCK-8 60 min post-treatment. Two-way ANOVA
found a main effect of SR141716A pre-treatment (F1,64=48.08;
pb0.0001) and a main effect of CCK-8 dose (F3,64=63.48; pb0.0001).
Post-hoc analysis revealed that pre-treatment with SR141716A reduces
food intake comparedwith-vehicle injectedanimals in control conditions
and there are also significant reductions with medium and high CCK-8
doses. The curve patterns for vehicle- and SR141716A-injected animals
are similar indicating that both compounds have additive effects (rather
than synergic effects).

4. Discussion

The present results show that: 1) systemic administration of
cannabinoid CB1 antagonist activate c-Fos expression in brainstem

image of Fig.�4


Fig. 5. Effectofpre-treatmentwithWIN55,212-2orSR141716Aonthemodulationof feeding
behaviour induced by CCK-8 60min post-treatment.WIN 55,212-2 (2 mg/kg, i.p.) or
SR141716A (1mg/kg, i.p.) were administered 30 min before CCK-8 injection (1-100 μg/kg,
i.p.) and animals were tested for food intake 60min post-treatment. WIN 55,212-2
counteracts feeding suppression induced by CCK-8, whereas the effects of SR141716A and
CCK-8 are additive in the suppression of food intake. Results shown as means±SEM,
n=9-10. Different from vehicle-injected animals: *pb0.05, **pb0.01; ***pb0.001. Two-way
ANOVA followed by Bonferroni post-test.

224 L. Orio et al. / Pharmacology, Biochemistry and Behavior 98 (2011) 220–226
areas receiving vagal inputs; 2) systemically administered cannabinoid
CB1 antagonists and CCK have additive effects as feeding suppressors;
3) the actions of CB1 antagonist on food consumption are not dependent
on CCK1 receptors; 4) the effects of cannabinoid CB1 agonists counteract
those of CCK, a major feeding inhibitor in the gut.

Previous investigations in our laboratory allowed the identification
of peripheralmechanisms for the endogenous cannabinoid anandamide
and its natural analogue oleyletahnolamide (which does not bind CB1
receptors) in the regulation of feeding (Gomez et al., 2002; Rodriguez de
Fonseca et al., 2001). While anandamide promotes overfeeding,
oleylethanolamide induce satiety and pre-treatment with the CB1
antagonist SR141716A enhances the inhibition of feeding induced by
intraperitoneal administration of oleyletahnolamide. Our present study
reproduces thesatiety effect ofCB1 receptorblockadeafter intraperitoneal
administration of SR141716A observed previously (Gomez et al., 2002). It
is known that food intake has a peripheral control systembased on highly
complex interactions in the gut-brain axis. Peripheral inputs related to
ingestive behaviour recruit CNS structures localized in the brainstem and
hypothalamus (Schwartz, 2000; Schwartz et al., 2000). Here, to identify
brain pathways engaged during SR141716A-evoked hypophagia, we
mapped protein levels for the activity regulated gene c-Fos by
immunohistochemistry after systemic administration of 0.3 mg/kg
or 3.0 mg/kg SR141716A. The low dose of SR141716A evoked a highly
localized increase in c-Fos levels in the PVN, area postrema, NST and
central nucleus of the amygdala, compared with controls. The enhance-
ment of c-Fos expressionobserved in theNST and area postrema indicates
activation of the peripheral nervous system since both brainstem areas
receive vagal inputs (Schwartz et al., 2000). Additionally, the PVN is a
hypothalamic nucleus involved in feeding controlwhere the coordination
of catabolic signals in the SNC takesplace (Schwartz et al., 2000). Similarly,
it is widely accepted that the anorectic effect of CCK is mediated by the
vagus nerve involving brainstemareaswhich receive vagal inputs, such as
the NST and area postrema, as well as hypothalamic nuclei (Cano et al.,
2003; Crawley andCorwin, 1994; Day et al., 1994). It is to note that others
have shown a reduction or an increase on food intake after central
administration of SR141716A (Verty et al., 2004) or CP55940 (Miller et al.,
2004). The net central contribution of the endogenous cannabinoid
system is of complex evaluation because it has been recently described
that there are cannabinoid-mediated pathways for both, feeding
stimulation and feeding inhibition, mediated by excitatory glutamatergic
pathways or inhibitory GABAergic neurons (Bellocchio et al., 2010). Thus,
systemic administration of a cannabinoid agonist/antagonist may have a
net central effect masked by the equilibrium in between stimulatory or
inhibitory actions. Although our results indicates a major peripheral
component for cannabinoid modulation of feeding, the existence of a
central component cannot be discarded and at least there is a report
(Madsen et al., 2009) showing that SR141716A suppressed feedingwhen
given at a high dose (10 mg/kg) in surgically vagotomized animals. Here,
we observed also a dose-dependency on brain CB1 blockade since
SR141716Aeffects on c-Fos expressionweremore evidentwith lowdoses
of theCB1antagonist (0.3 mg/kg) andwere attenuated after a higher dose
of 3.0 mg/kg. We believe that this differential pattern of c-Fos expression
might be related to the dose-dependent central versus peripheral actions
of SR141716A. Thus, the effects of the lower doses are related probably
with blockade of CB1 receptors located on peripheral sensory terminals
since we have described that SR141716A has a poor to intermediate
penetration into the brain (Pavon et al., 2006). Blockade of the effects of
centrally administered cannabinoid CB1 receptor agonists is not achieved
by SR141716A at doses lower than 1 mg/kg, being optimal at 3 mg/kg
(Gomez et al., 2002).

In this study we observed that whereas systemic administration of
cannabinoid CB1 antagonists and CCK has additive effects on feeding
suppression, the actions of SR141716A on food consumption are not
dependent on CCK1 receptors. A recent study (Burdyga et al., 2004)
provides the framework for the additive effects observed between
systemic CB1 antagonism and CCK1 activation in our present study in
vivo. Burdyga et al. (2004) demonstrated that vagal afferent neurons
expressing CCK1 receptors also express cannabinoid CB1 receptors,
and that the expression of CB1 receptors in the nodose ganglia is
increased by fasting and inhibited by cholecystokinin. Additionally,
the CCK1 antagonist lorglumide blocks the loss of CB1 receptor
expression in afferent neurons after refeeding (Burdyga et al., 2004).
In line with these results is tempting to speculate that the peripheral
action of endogenous cannabinoids in stimulating the appetite is not
mediated by interaction with peripheral CCK1 receptor activation but
may be mediated by CCK-regulated expression of CB1 receptors.
These results emphasize the hypothesis that SR141716A and CCK
share the samemechanism of action regarding suppression of feeding,
showing together an anorectic additive effect due to the convergence
of both intracellular pathways in the same physical location as
suggested by CB1 and CCK1 receptor colocalization.

As expected, pre-treatment with the CB1 agonist WIN55,212-2
counteracted the feeding suppression induced by CCK. The effect was
more evident in partially-satiated animals, which was used as a model
for CB1 agonist-induced overfeeding (Williams et al., 1998; Williams
and Kirkham, 1999). Physiologically, peripheral CB1 receptors have a
primary role as regulators of food intake by regulation of intestinal
motility and gastric emptying. CB1 receptor activation is generally
inhibitory and therefore CB1 agonists reduce gastric emptying and
gastrointestinal transit, an effect that is counteracted by SR141716A
(DiMarzo et al., 2008; Landi et al., 2002). Similarly, an enhanced gastric
distentionmay contribute to the satiety effect of peripheral CCK (Miceli,
1985). The effects on food intake observed after WIN55,212-2 and
SR141716A administration are likely produced by binding to CB1

image of Fig.�5
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receptors located in peripheral sensory terminals. Although additional
cannabinoid receptors have been identified (Baker et al., 2006), the
actual pharmacology of SR141716A orWIN55,212-2 on these receptors
is not fully understood and its implications for the peripheral control of
feeding remains to be determined.

The additive effects of CB1 antagonist and CCK1 agonist acting
peripherally in the suppression of feeding may offer an alternative for
combined pharmacotherapy, avoiding central undesirable effects.
Possible interactions between CCK and CB1 expression in the CNS are
still unexplored. However, unlike CCK2 receptors, CCK1 receptor
activation appears not to mediate anxiety-like behaviours (Rex and
Fink, 1998; Cohen et al., 2004; Bertoglio and Zangrossi, 2005; Yang
et al., 2006). The CCK2 receptor is distributed through the brain and
concentrated in brain areas related with anxiety, whereas CCK1

receptor distribution is restricted to peripheral organs and brain areas
related with the peripheral system, playing a major role in the
modulation of feeding (Smith et al., 1981; Crawley and Corwin, 1994;
Niehoff, 1989; Noble et al., 1999; Liu et al., 1994; Mercer et al., 1996).
It is noteworthy that the existence of central undesirable effects as
depression and anxiety in patients has recently outweighed the
beneficial effects of the CB1 antagonist therapy against obesity (for a
review see Lee et al., 2009; Moreira and Crippa, 2009). Our group
demonstrated that a cannabinoid CB1 antagonist with poor penetra-
tion into the brain reduces feeding without producing anxiety (Pavon
et al., 2006; Pavón et al., 2008). In this context, CCK1 receptor agonism
may be additive to the peripheral actions of CB1 antagonists as
supressors of feeding allowing a reduction in the effective CB1
antagonist doses and consequently reducing undesirable central
effects. Clearly, exploration of CB1 antagonist and CCK1 agonist
interactions deserves further investigation as possible combined
therapy against obesity.

In conclusion, we show here that the anorectic effect of blocking
CB1 receptors is accompanied by c-Fos activation of central brain
structures related with the peripheral nervous system and is not
mediated by CCK1 receptor activation. Systemic CCK1 agonist
administration has additive effects on cannabinoid CB1 antagonist-
induced feeding suppression whereas agonism of CB1 receptors
counteracts the anorectic effects of CCK. Results together emphasize
the importance of peripheral modulation of feeding by the endocan-
nabinoid system, without discarding the existence of a central
component, and provide a framework to study combined therapies
for the treatment of eating disorders.
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